A One-Pot Tandem Olefin Isomerization/Metathesis-Coupling (ISOMET) Reaction
نویسندگان
چکیده
A tandem catalytic reaction has been developed as part of a process to discover tungsten-based olefin metathesis catalysts that have a strong preference for terminal olefins over cis or trans internal isomers in olefin metathesis. This tandem isomerization/terminal olefin metathesis reaction (ISOMET) converts Cn trans internal olefins into C2n−2 cis olefins and ethylene. This reaction is made possible with Ru-based “alkene zipper” catalysts, which selectively isomerize trans olefins to an equilibrium mixture of trans and terminal olefins, plus tungsten-based metathesis catalysts that react relatively selectively with terminal olefins to give Z homocoupled products. The most effective catalysts are W(NAr)(C3H6)(pyr)(OHIPT) (Ar = 2,6-diisopropylphenyl; pyr = pyrrolide; OHIPT = O-2,6-(2,4,6-i-Pr3C6H2)2C6H3) and various [CpRu(P− N)(MeCN)]X (X− = [B(3,5-(CF3)2C6H3)4] −, PF6 −, B(C6F5)4 −) isomerization catalysts.
منابع مشابه
Catalytic synthesis of n-alkyl arenes through alkyl group cross-metathesis.
n-Alkyl arenes were prepared in a one-pot tandem dehydrogenation/olefin metathesis/hydrogenation sequence directly from alkanes and ethylbenzene. Excellent selectivity was observed when ((tBu)PCP)IrH2 was paired with tungsten monoaryloxide pyrrolide complexes such as W(NAr)(C3H6)(pyr)(OHIPT) (1a) [Ar = 2,6-i-Pr2C6H3; pyr = pyrrolide; OHIPT = 2,6-(2,4,6-i-Pr3C6H2)2C6H3O]. Complex 1a was also esp...
متن کاملOne-Pot Isomerization–Cross Metathesis–Reduction (ICMR) Synthesis of Lipophilic Tetrapeptides
An efficient, versatile and rapid method toward homologue series of lipophilic tetrapeptide derivatives (herein, the opioid peptides H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal number of synthetic steps resulted from a one-pot tandem isomerization-cross metathesis-reduction sequence (ICMR), applicable both in solution and solid phase methodology. The broadly applicable...
متن کاملIn tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.
A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity.
متن کاملSynthesis of functionalized vinyl boronates via ruthenium-catalyzed olefin cross-metathesis and subsequent conversion to vinyl halides.
Functionalized vinyl pinacol boronates suitable for Suzuki cross-coupling reactions are synthesized using ruthenium-catalyzed olefin cross-metathesis of 1-propenyl pinacol boronate and various alkenes, including functionalized and 1,1-disubstituted alkenes. The resultant boronate cross products are stereoselectively transformed into predominantly Z-vinyl bromides and E-vinyl iodides. The vinyl ...
متن کاملPrevention of undesirable isomerization during olefin metathesis.
1,4-Benzoquinones have been found to prevent olefin isomerization of a number of allylic ethers and long-chain aliphatic alkenes during ruthenium-catalyzed olefin metathesis reactions. Electron-deficient benzoquinones are the most effective additives for the prevention of olefin migration. This mild, inexpensive, and effective method to block olefin isomerization increases the synthetic utility...
متن کامل